If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2=351
We move all terms to the left:
m^2-(351)=0
a = 1; b = 0; c = -351;
Δ = b2-4ac
Δ = 02-4·1·(-351)
Δ = 1404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1404}=\sqrt{36*39}=\sqrt{36}*\sqrt{39}=6\sqrt{39}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{39}}{2*1}=\frac{0-6\sqrt{39}}{2} =-\frac{6\sqrt{39}}{2} =-3\sqrt{39} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{39}}{2*1}=\frac{0+6\sqrt{39}}{2} =\frac{6\sqrt{39}}{2} =3\sqrt{39} $
| x*(.05)=100000 | | x*(.05x)=100000 | | 102-x=38 | | 42+x=74 | | (x/5)-(3x+2/2)=2 | | 0.10x+00.5(12-x)=0.10(9) | | 8m+160=400 | | 3.7x-1+7=154 | | -4x-5=x+35 | | x-16+23=90 | | -3x+19=-x+31 | | 1.5+3.7+0.5i=17.2 | | 4s-8s+6s+4s=4s | | 5.1+2.3l=23.5 | | 10p+4=39 | | -4.6=y-5.4 | | 4+2x-8=9 | | 4+3x-8=9 | | 4x+6(5x-3)=5x-7(x+6) | | 7x+5+6x-4=152 | | 7x+5+6x-4=76 | | 1-y-2y=4 | | 3r-12=30 | | 6x+3(x-8)=4 | | (7x+60)+(108-3x)=189 | | X+10+12x=110 | | (4x)+(12x-12)=180 | | b-735=465 | | -8+-2x=-32+35x | | 5/8=x/320 | | 350=0.95*x | | 6s+19+3s+36=180 |